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Abstract

The stability of a linear Hamilton system, 2�-periodic in time, with two degrees of freedom is investigated. The system depends
on the parameters �k(k = 1, 2, . . ., s) and �. The parameter � is assumed to be small. When � = 0 the system is autonomous, and the
roots of its characteristic equation are equal to ±i�1 and ±i�2 (i is the square root of −1 and �1 ≥0, �2 ≥ 0). Cases of multiple
resonance are investigated when, for certain values of γ

(0)
k of the parameters �k, the numbers 2�1 and 2�2 are simultaneously integers.

All possible cases of such resonances are considered. For small but non-zero values of � an algorithm for constructing regions of
instability in the neighbourhood of resonance values of the parameters γ

(0)
k is proposed. Using this algorithm, the linear problem of

the stability of the steady rotation of a dynamically symmetrical satellite when there are multiple resonances is investigated. The
orbit of the centre of mass is assumed to be elliptical, the eccentricity of the orbit is small, and in the unperturbed motion the axis
of symmetry of the satellite is perpendicular to the orbital plane.
© 2006 Elsevier Ltd. All rights reserved.

Many problems on the stability and non-linear oscillations of mechanical systems lead to the need to investigate
a linear Hamilton system with two or more degrees of freedom, which depend on a small parameter �, and which is
continuous and 2�-periodic in time t. Suppose the Hamilton function F of this system is analytic in � and, when � = 0,
is independent of t. The Hamilton function may depend on certain parameters �k(k = 1, 2, . . ., s), and this dependence
is analytic. We will also assume that the number of degrees of freedom of the system is equal to two. We will denote
the frequencies of small oscillations of the system when � = 0 by �1 and �2(�1 ≥ �2 ≥ 0). They are functions of the
parameters �k(k = 1, 2, . . ., s).

The problem of the stability of the system for small but non-zero values of the parameter � (the problem of parametric
resonance) has been investigated in considerable detail.1 Formulae have been obtained for finding the boundaries of the
instability regions in the first (and in many cases in the second) approximation. In the space of parameters �, �k(k = 1,
2, . . ., s) these regions may only originate when � = 0, from those points γk = γ

(0)
k at which resonances of the first or

second order occur, i.e. when the following relation is satisfied

where k1, k2 and n are integers, and |k1| + |k2| = 1 or 2. As a rule, single resonances have been investigated (when only
one of the resonance relations are satisfied for γk = γ

(0)
k ).
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In this paper we investigate multiple parametric resonance. It is only possible when, for γk = γ
(0)
k , the following

two resonance relations are simultaneously satisfied

where n1 and n2 are non-negative integers. A constructive algorithm is proposed for obtaining the boundaries of the
stability and instability regions for all possible cases of multiple resonance. Some cases of multiple resonance were
considered previously in Refs. 2,3.

1. Method of investigation

We will represent the equations of the boundaries of the stability and instability regions, adjacent to the point
γk = γ

(0)
k when � = 0, in the form of the following series

(1.1)

When solving specific problems, instead of the series (1.1) one must consider polynomials of finite degree in �.
We substitute expansion (1.1) into the initial Hamiltonian F and expand it in series in powers of �. The first term

of this series F0 = F0(q1, q2, p1, p2) is equal to the functions F, calculated when ε = 0, γk = γ
(0)
k . We will denote the

matrix of the system of equations of motion with unperturbed Hamiltonian F0 by A0.
We then make the canonical transformation q1, q2, p1, p2 → x1, x2, X1, X2, specified by a constant real matrix

and which reduces the unperturbed quadratic Hamiltonian F0 to its real normal form H0. In the new variables, the
Hamiltonian of the problem can be written in the form of the following series

(1.2)

where Hm(m ≥ 1) are quadratic forms in the canonically conjugate variables x1, x2, X1 and X2, the coefficients of which
are 2�-periodic in t.

A list of all possible normal forms H0 for the Hamiltonian F0 can be found in Ref. 4 (see also Appendix 6 in the
book5). Constructive algorithms for reducing the function F0 to its normal form H0 are also known.6–8

After reducing the Hamiltonian to the form (1.2) we make the close to identical �-periodic in t canonical transfor-
mation x1, x2, X1, X2 → y1, y2, Y1, Y2 (� = 2� or 4� depending on the specific case of multiple resonance; see below),
choosing it so that in the new Hamiltonian

(1.3)

the time has been eliminated up to terms of a certain finite power n in � (n can be fairly high). If, in expansion (1.3),
we then neglect terms of higher powers than n, we arrive at an approximate linear autonomous Hamilton system with
two degrees of freedom. Its characteristic equation is biquadratic and is written in the form

(1.4)

where a and b are polynomials in �, the coefficients of which depend on the required coefficients γ
(1)
k , . . . , γ

(n)
k (k = 1,

2, . . ., s) of expansions (1.1).
Satisfaction of the following inequalities

(1.5)

is the sufficient condition for stability. At the boundaries of the stability and instability regions the following relations
are satisfied

(1.6)
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Equating the coefficients of �, �2, . . ., �n on the left-hand sides of these relations to zero, we obtain a system of equations
for the coefficients γ

(1)
k , . . . , γ

(n)
k (k = 1, 2, . . ., s) of expansions (1.1).

In certain resonance cases the biquadratic Eq. (1.4) can be split into two quadratic equations, and it becomes easier
to analyse them (see below, Sections 3.2, 3.4 and 5).

To construct the replacement of variables x1, x2, X1, X2 → y1, y2, Y1, Y2 and the transformed Hamiltonian (1.3) we
will use a modification of the Deprit-Hori method, described in Ref. 9. We will write the generating function W of the
Lie transformation, employed in the Deprit-Hori method, in the form of a series

We have the following recurrence relations for calculating the converted Hamiltonian6,9

(1.7)

Here we have denoted the Poisson bracket of the functions f and Wi by Lif

In the following sections, the algorithm for obtaining the boundaries of the stability and instability regions is considered
in more detail as it applies to each of the possible multiple resonances. It should be noted that, in specific problems,
the algorithm may turn out to be quite cumbersome, and hence, as a rule, its realization requires the use of Analytical
Computation Systems.

2. The resonance �1 = �2 = 0

We will first consider the case when both frequencies of small oscillations are equal to zero when γk = γ
(0)
k . This

case is encountered fairly rarely in practice. However, as will be seen from what follows, from the computational point
of view many other special cases of multiple resonance reduce to it.

Depending on the value of the rank r of the matrix A0 of the equations of motion of the unperturbed system, when
�1 = �2 = 0 we must distinguish four cases (r = 3, 2, 1 or 0), which do not reduce to one another. We will consider them
in sequence.

2.1. The case r = 3

In this case the function H0 in the converted Hamiltonian (1.3) has the form7

(2.1)

According to relations (1.7), finding the first approximation in � reduces to considering the following linear partial
differential equation

(2.2)

We will write the quadratic form H1 in this equation in the form
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where the summation is carried out over the non-negative integers m1, m2, n1 and n2, the sum of which is equal to two.
We will also represent the desired quadratic forms K1 and W1 in the form of similar sums.

It is required to choose the coefficients w(1)
m1,m2,n1,n2

of the form W1 so that they are 2�-periodic in t, while the
coefficients k(1)

m1,m2,n1,n2
of the form K1 are constant.

Equating the coefficients of like powers of y1, y2, Y1 and Y2 on the left and right sides of equality (2.2), we obtain
the following ten relations

(2.3)

Considering these relations in succession, we can obtain the functions w(1)
m1,m2,n1,n2

(t) and k(1)
m1,m2,n1,n2

, which satisfy
the requirements formulated above. We obtain

(2.4)

and so on.
In exactly the same way we can obtain second and higher approximations from relations (1.7) and (2.1). In the limit,

we obtain the transformed Hamiltonian (1.3) in the form

(2.5)

The function H0 is defined by (2.1), the summation is carried out over the non-negative integers m1, m2, n1 and n2, the
sum of which is equal to 2, while the constant coefficients km1,m2,n1,n2 are calculated from the formula

(2.6)

where k(m)
m1,m2,n1,n2

is the coefficient of ym1
1 ym2

2 Yn1
1 Yn2

2 in the quadratic form Km.
Confining ourselves in the expansions (2.5) to terms, the power of which in � does not exceed n, we can obtain

relations from conditions (1.6) which the quantities γ
(1)
k , . . . , γ

(n)
k (k = 1, 2, . . . , s) must satisfy, which define the

boundaries of the stability and instability regions (1.1).
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2.2. The case r = 2

Technically, the investigation of this case is similar to the investigation of the case r = 3 carried out above, and hence
we will merely write the equations which define the first approximation. For r = 2 we have7

(2.7)

and from Eq. (2.2) we obtain ten of these relations

(2.8)

This system of equations is considered in the same way as system (2.3). We obtain the following expression for the
coefficients of the quadratic forms K1 and W1

(2.9)

and so on.

2.3. The case r = 1

If r = 1, the function H0 in (1.3) is given by the equality7

(2.10)

The investigation of this case hardly differs from that of the case r = 2. We merely need to put �1 = 0 in the equations of
the first approximation (and in the equations of subsequent approximations, obtained from relation (1.7)), and replace
the function (2.7) by the function (2.10) in the converted Hamiltonian (2.5).
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2.4. The case r = 0

In this case H0 = 0. Eq. (2.2) of the first approximation has the form

(2.11)

and its solution can be found very simply. The quadratic form K1 with constant coefficients and the 2�-periodic
quadratic form W1 can be taken as follows:

(2.12)

We can similarly construct solutions of the equations of the second and higher approximations.

3. The resonance 2�1 = n1, �2 = 0

We will consider multiple resonances when the frequency �2 of small oscillations of the unperturbed system is equal
to zero, while the other frequency �1 is non-zero but 2�1 = n1, where n1 is a natural number. Here we must distinguish
four cases depending on the rank r of the matrix A0 of the equations of motion with unperturbed Hamiltonian F0 (it
can be equal to three or two) and also depending on whether n1 is even or odd.

3.1. The case r = 3 and n1 is an even number

In the Hamilton function (1.2) we have

(3.1)

Before converting the Hamilton function (1.2) to the form (1.3) by the Deprit-Hori method we will make the canonical
univalent transformation x1, x2, X1, X2 → x′

1, x
′
2, X

′
1, X

′
2 using the following formulae

(3.2)

This replacement of variables eliminates the term 1
2σ1(x2

1 + X2
1) from the Hamiltonian (3.1). If we omit the primes in

the notation of the new variables, the new Hamilton function can be written in the form (1.2), where H0 = 1
2δ2X

2
2,

while the functions Hm are 2�-periodic in t, as before. Therefore, the case of multiple resonance being investigated
has also been reduced to one of the cases of two zero frequencies, considered in Section 2.3.

3.2. The case r = 3 and n1 is odd

As in the preceding case, the function H0 is given by Eq. (3.1), and after the replacement of variables (3.2) the
Hamiltonian can be written in the form (1.2), where H0 = 1

2δ2X
2
2. Hence, as in the previous case, we arrive at the case

of resonance at two zero frequencies, considered in Section 2.3. However, unlike the previous case, when n1 is even,
here, for odd n1, the functions Hm, after replacement (3.2), will generally speaking have a period of 4� in t and not
2�. When finding the constant coefficients of the quadratic forms Km using formulae of the form (2.8) (in which, as in
Section 2.3, we must put �1 = 0), the mean values of the corresponding functions must be calculated with a period of
4� with respect to time.

The converted Hamiltonian (2.5) will not contain all ten but only six monomials

(3.3)
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In a system with such a Hamiltonian the equations for the variables y1, Y1 and y2, Y2 can be split. We put

(3.4)

When at least one of the inequalities d1 > 0 or d2 > 0 is satisfied we will have instability. At the boundaries of the stability
and instability regions at least one of the quantities d1 or d2 vanishes. Equating the coefficients of the expansions of
the functions (3.4) in series in powers of � to zero, we obtain relations determining the expansion coefficients (1.1).

3.3. The case r = 2 and n1 even

The function H0 in expression (1.2) has the form

(3.5)

After the replacement of variables (3.2) we arrive at the Hamiltonian (1.2) in which H0 = 0. Hence, the case of multiple
resonance here also reduces to one of the cases of resonance �1 = �2 = 0, considered in Section 2.4.

3.4. The case r = 2 and n1 odd

The function H0, as in the previous case, is specified by equality (3.5), and after making the replacement (3.2) we
again arrive at the case H0 = 0 from Section 2.4. The functions Hm in (1.2) will, generally speaking, have a period
of 4�. When finding the quadratic forms Km using formulae of the form (2.12), the mean values are calculated for a
period of 4�.

The converted Hamiltonian (2.5) will only contain six monomials and is given by equality (3.3), in which the
quantity �2 must be put equal to zero.

As in the case (3.2), the boundaries of the stability and instability regions are given by the equalities d1 = 0 or d2 = 0,
where d1 and d2 are the functions (3.4) in which �2 = 0.

4. The resonance 2�1 = 2�2 = n

We will now consider possible multiple resonances, when not one of the frequencies of small oscillations of the
unperturbed system is equal to zero. In this section the frequencies are assumed to be equal: �1 = �2 = �, where 2� = n,
and n is a natural number. Depending on the rank r of the matrix (A0 − i�E) (it can be equal to three or two) here two
cases are possible which do not reduce to one another.

4.1. The case r = 3

In this case we have the following expression for the function H0 in (1.2)

(4.1)

Parametric resonance in a system with Hamiltonian (4.1) was investigated previously in Ref. 3. If we introduce new
canonically conjugate variables x′

j, X
′
j(j = 1, 2) using the univalent canonical transformation

(4.2)

the term ω(x1X2 − x2X1) in Hamiltonian (4.1) will be cancelled. In the new variables, the Hamilton function (1.2)
remains 2�-periodic in t, and its unperturbed part has the form (we will omit the primes in the notation of the new
variables)

(4.3)
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Hence, we again arrive at one of the cases of two zero frequencies considered in Section 3.3. We need only put
�1 = �2 = � when carrying out calculations using formulae of the form (2.8) and (2.9).

4.2. The case r = 2

The function H0 in expression (1.2) is the sum of the Hamiltonians of two harmonic oscillators with the same
frequencies �

(4.4)

If we make the univalent canonical replacement of variables xj, Xj → x′
j, X

′
j(j = 1, 2) using the formulae

(4.5)

we obtain the Hamiltonian (1.2), 2�-periodic in t, in which H0 = 0, i.e. the resonance case being investigated reduces
to the case of two zero frequencies considered in Section 2.4.

5. The resonance 2�1 = n1, 2�2 = n2 (n1 �= 0, n2 �= 0)

It remains to consider multiple resonances, when the frequencies of the unperturbed system are non-zero and
different. Such resonances were investigated previously in Ref. 2. The normal form of the unperturbed Hamiltonian
F0 is given by equality (4.4) in which �1 = �1�1, �2 = �2�2, �1 = ±1, �2 = ±1. After replacing the variables (4.5) we
arrive at Hamiltonian (1.2) in which H0 = 0. Hence, the further investigation is carried as in Section 2.4.

It is useful to distinguish two cases in the calculations. When both numbers n1 and n2 are even or they are both odd,
the converted Hamiltonian K (given by Eq. (2.5) in which H0 = 0), will contain, generally speaking, all ten monomials
and the boundaries of the stability and instability regions will be found from relations (1.6). If one of the numbers n1
or n2 is even, while the other is odd, the Hamiltonian K will not contain all ten but only six monomials and is given
by an equality of the form (3.3), in which �2 = 0. The boundaries of the stability and instability regions are found from
the equalities d1 = 0 and d2 = 0, where d1 and d2 are the quantities (3.4) in which �2 = 0.

6. The stability of the steady rotation of a dynamically symmetrical satellite in an elliptic orbit

Suppose the centre of mass of the satellite moves in an elliptic orbit of eccentricity e in a central Newtonian
gravitational field. The satellite is a rigid body, the central ellipsoid of which is a spheroid. The equatorial and polar
moments of inertia of the satellite will be denoted by A and C. It is well known,10 that the problem of the motion of a
satellite about a centre of mass under the action of gravitational moments allows of a particular solution, for which the
axis of dynamic symmetry of the satellite is perpendicular to the orbital plane, while the satellite itself rotates around
the axis of symmetry with a constant angular velocity r0.

The Hamilton function F, corresponding to the linearized equations of perturbed motion of the axis of symmetry in
the neighbourhood of the normal to the orbital plane, has the form11

(6.1)

Here � = C/A, 	 = r0/�0 (0 < � ≤ 2, −∞ < 	 < ∞) and �0 is the average motion of the centre of mass in the orbit and
we have taken the true anomaly 
 as the independent variable.

If we introduce the notation

(6.2)
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Fig. 1.

then, in a circular orbit (e = 0) the regions G1 and G2 (Fig. 1) of stability in the first approximation of the steady rotation
of the satellite can be specified by the inequalities12

(6.3)

respectively. Here

(6.4)

The instability regions are shown hatched in Fig. 1. For values of the parameters � and 	, belonging to the regions G1
and G2 or their boundaries, the frequencies �1 and �2(�1 ≥ �2 ≥ 0) of small oscillations of the axis of symmetry in
the neighbourhood of the normal to the orbital plane are the roots of the equation

(6.5)

A denumerable set of curves exists in regions G1 and G2,11 on which first-order and second-order resonances occur.
For small values of the eccentricity e many multiple parametric resonances are possible. Below we will investigate
the stability of the steady rotation of a satellite for some of these resonances only. For small e we obtain stability and
instability regions in the neighbourhood of ten points Pi(�, 	) (see Fig. 1). The cases investigated, on the one hand,
are of independent interest, while on the other they illustrate the majority of possible multiple parametric resonances
considered in a Hamilton system with two degrees of freedom, 2�-periodic in the independent variable. Other examples
of multiple resonances in the problem of the stability of the motion of a dynamically symmetrical satellite in an elliptic
orbit, not considered in this paper, were investigated previously in Refs. 3,13.

6.1. A satellite, the geometry of the masses of which corresponds to a plate (2A = C)

In the case of a plate, � = 2 and Hamiltonian (6.1) depends on two parameters 	 and e. We will consider the possibility
of the existence of multiple parametric resonance in an orbit with a small eccentricity for values of the parameter 	
not belonging to the interval −1 < 	 < 1/2 of instability of the steady rotation of the satellite in a circular orbit (Fig. 1).

In Fig. 2 we show the frequencies �1 and �2 as a function of the parameter 	 in the case of a circular orbit. For
all the values of 	 considered the inequalities �1 > 1.94596 and 0 ≤ �2 < 1.25996 hold. Only two cases of multiple
resonance are possible: �1 = 2 and �2 = 0 (when β = 1⁄2, see point P1 in Fig. 1) and �1 = 2 and �2 = 1 (when 	 = 1, see
point P2 in Fig. 1).
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Fig. 2.

The resonance �1 = 2 and �2 = 0. In Hamiltonian (6.1) we put

and we expand it in series in powers of e. The unperturbed Hamiltonian F0 has the form

The univalent canonical transformation

reduces the function F0 to its real normal form H0,

Further, using the algorithm in Section 3.1, we can obtain the Hamiltonian (2.5). Up to first powers in e it will take the
form

(6.6)

The coefficients a and b of characteristic Eq. (1.4) of the approximate system with Hamiltonian (6.6) have the form

Hence, by relations (1.6), it follows that at the boundaries of the stability and instability regions the equality �1 = 0
must be satisfied.

Putting �1 = 0 and calculating the Hamiltonian (6.6) up to terms of the fourth power in e inclusive, we obtain the
following expressions for the coefficients a and b and for the quantity d, which occurs in the last inequality of (1.5)
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Fig. 3.

where

For �2 = 0 and small e, the value of b is negative, and hence it follows from relations (1.6), that the boundaries of the
stability and instability regions are found from the conditions a ≥ 0 and b = 0. Equating the quantity b(6) to zero, we
obtain three positive values of the quantity �2, corresponding to the required boundaries: 1 ± √

10/8 and 2. For these
values of �2, from the equation b(7) = 0 we obtain �3 = 0. Then the equation b(8) = 0 for �3 = 0 and the three values of
�2 obtained gives three values of �4, corresponding to the boundaries of the stability and instability regions. Hence,
we obtain, with an error of the order of e5, the following three equations of the boundary curves issuing from the point
(0, 1⁄2) in the e, 	 plane

(6.7)

Curves (6.7) are shown in Fig. 3a. The instability regions are shown hatched.
The resonance �1 = 2 and �2 = 1. We put

(6.8)

and we expand Hamiltonian (6.1) in series in powers of e. For the unperturbed Hamiltonian F0 we have the expression

In the variables x1, x2, X1 and X2, which occur in the canonical transformation

the function F0 takes its normal form
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By the algorithm of Section 5, we can eliminate from Hamiltonian (1.2) its unperturbed part H0 and obtain the
transformed Hamiltonian (1.3). The coefficients a and b of characteristic Eq. (1.4) and the quantity d from (1.5) can
be represented in the form of series in powers of e

(6.9)

where a(k), b(k), d(k) are functions of the coefficients of the expansion (6.8), and

(6.10)

Since the coefficient a is positive for small e, according to relations (1.6), the boundaries of the stability and instability
regions are defined by the equalities b = 0 and d = 0.

Consider the equality b = 0. It can be seen from formulae (6.10) that the coefficient b(4) in the expansion of b in
series vanishes if �1 = ±3/2. Calculations show that in that case the coefficient b(5) also vanishes, while the coefficients
b(6), b(7) and b(8) will be as follows:

Equating the quantities b(6), b(7), b(8) to zero, we obtain a system of equations for finding the quantities �2, �3 and
�4, defining the boundaries of the stability and instability regions (on which b = 0) apart from terms of the fourth
power in e inclusive. Calculations showed that four boundaries 	 = 	i(e) (i = 1, 2, 3, 4) exist, where 	3(e) = 	1(−e),
	4(e) = 	2(−e), while

We will now consider the equality d = 0. According to the last of the equations of (6.10), the coefficient d(4) in the
expansion of d in series vanishes only if �1 = 0. Calculations show that when �1 = 0 we have d(5) = 0, and the coefficients
d(6), d(7), d(8) are given by the equalities

The system of equations d(6) = 0, d(7) = 0, d(8) = 0 has two solutions, which correspond to two boundaries of the stability
and instability regions (on which d = 0). Apart from terms of the fourth power of e inclusive, these boundaries are given
by the equations

In Fig. 3b in the e, 	 plane we show six of the curves obtained, which separate the stability and instability regions in
the neighbourhood of the point (0,1) of the multiple resonance considered. The instability regions are shown hatched.
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6.2. A satellite whose ellipsoid of inertia is close to a sphere (A�C)

If the central ellipsoid of inertia of the satellite is a sphere, we have � = 1. When � = 1 it follows from the equation
of the frequencies (6.5) that �1 = |	 − 1|, �2 = 1 if 	 ≤ 0 or 	 ≥ 2 and �1 = 1, and �2 = |	 − 1| if 0 ≤ 	 ≤ 2. In a low-
eccentric orbit a multiple parametric resonance is possible in the neighbourhood of points of the axis � = 1, in which
the quantity 2	 is an integer. We will always consider three cases of multiple resonance, which illustrate the algorithms
described in Sections 4.2, 3.4 and 3.3.

The resonance �1 = �2 = 1. For small values of e we will consider the neighbourhood of the point P3(1, 2) (Fig. 1).
To find the surfaces which separate stability and instability regions in �, 	, e space, we put

(6.11)

We substitute the quantities (6.11) into Hamiltonian (6.1), expand in series in powers of e and make the univalent
canonical replacement of variables

which reduce the unperturbed Hamiltonian

to the normal form

Further calculations were carried out using the algorithm of Section 4.2. We obtain the following expression for the
coefficient a of the characteristic Eq. (1.4)

Since a > 0, then, according to conditions (1.6), the boundaries of the stability and instability regions can be found
from the relations b = 0 or d = 0.

Calculations show that the equality b = 0 defines two sets of expressions for the coefficients of the expansion (6.11)
of the quantity 	 in series in terms of the quantity 
1

and

Consequently, the equality b = 0 defines two surfaces which separate the stability and instability regions in �, 	, e space.
In parametric form (the quantities 
1 and e play the role of the parameters) the equations of the boundary surfaces are
given by equalities (6.11), in which the quantities �1, �2, . . . are expressed in terms of 
1. Eliminating the parameter

1 from these equations, we can obtain the equations of the boundary surfaces in explicit form 	 = 	i(�, e) (i = 1, 2).
Apart from terms of the fourth power inclusive in e and (� − 1), we obtain
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Fig. 4.

From the equality d = 0 we can similarly obtain two boundary surfaces 	 = 	i(�, e) (i = 3, 4)

To illustrate the above investigation, in Fig. 4a we show a section of the stability and instability regions in the neigh-
bourhood of the point P3 of the e = 0.2 plane. The instability regions are shown hatched.

The resonance ω1 = 1
2 and �2 = 0. Consider the neighbourhood of the point P4(1, 3

2 ). We will represent the quantities
� and 	 by expansions of the form (6.11) (replacing the number 2 by the number 3/2 in the expansion of 	), substitute
into the Hamilton function (6.1) and expand it in series of powers of e. The unperturbed Hamiltonian has the form

while the frequencies of small oscillations are equal to 1 and 1⁄2.
We make successively two canonical univalent replacements of variables using the formulae

(6.12)

(6.13)

Replacement (6.12) reduces F0 to the sum of Hamiltonians of two harmonic oscillators with frequencies 1 and 1⁄2

while replacement (6.13) eliminates from it the part corresponding to the oscillator with a frequency of unity. (In
addition, this replacement leads to renumbering of the oscillators.)

After the replacement of variables (6.12) and (6.13) the unperturbed Hamiltonian takes the form

The new frequencies ω1 = 1
2 and �2 = 0 correspond to this Hamiltonian, i.e. they formally lead to the case of multiple

resonance from Section 3.4.
The Hamiltonian (1.2), converted using the Deprit-Hori method, is given by equality (3.3) (in which �2 = 0). Calcu-

lations showed that there is an equation d2 = −e2ν2
1 + O(e3) for the quantity d2 from formulae (3.4). Since, for small

e, the quantity d2 is negative, the boundaries of the stability and instability regions are given solely by the equality
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d1 = 0. As calculations showed, this equality defines two boundary surfaces in �, 	, e space. Neglecting quantities, the
power of which in e and (� − 1) is greater than the fourth, the equations of these surfaces can be written in the form

In Fig. 4b we show a section of the stability and instability regions in the neighbourhood of the point P4 in the plane
e = 0.2. The instability regions are shown hatched.

The resonance �1 = 1 and �2 = 0. We will investigate the neighbourhood of the point P5(1, 1). When e = 0, two
instability regions adjoin this point (see Fig. 1). One of the regions (for which � < 1) is given by the inequalities
�	 − 1 > 0, �	 + 3� − 4 < 0 (see relations (6.2) and (6.3)), while the other (for which � > 1) is given by the inequalities
�	 − 1 < 0, �	 + 3� − 4 > 0. The curves �1 + �2 = 1 and �1 − �2 = 1, passing into the regions G1 and G2 (Fig. 1)
respectively, also adjoin the point P5 (see11). These curves are not shown in Fig. 1.

To investigate the stability for small e we will represent � and 	 by expansions of the form (6.11) (replacing the
number 2 by 1 in the expansion of 	). The unperturbed Hamiltonian F0 will be

The canonical transformation

converts the function F0 into its normal form

i.e. we have the case of multiple resonance from Section 3.3.
Following the algorithm of Sections 3.3 and 2.4, we can reduce the perturbed Hamiltonian to the form (2.5) (where

H0 = 0). We obtain the following estimates for the coefficients a and b of Eq. (1.4)

Hence it also follows from relations (1.6) that the boundaries of the stability and instability regions in �, 	, e space are
found from the equations b = 0 and d = 0.

Calculations showed that the equation b = 0 defines two boundary surfaces, the parametric equations of which have
the form

(6.14)

and

(6.15)

With an error, the order of which in e and (� − 1) is no less than the fifth, Eqs. (6.14) and (6.15) of the boundary
surfaces can be written in the following explicit form

(6.16)
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Fig. 5.

The equation d = 0 also gives two boundary surfaces. Their equations 	3(�, e) and 	4(�, e) can be written with the
same accuracy as follows

(6.17)

In Fig. 4c we show a section of the stability and instability regions in the neighbourhood of the point P5 in the plane
e = 0.2. The instability regions are shown hatched. The instability regions lying between curves 	1 and 	2 are somewhat
contracted instability regions for small e, which exist in a circular orbit, while the instability regions which lie between
the curves 	3 and 	4, arise from the curves �1 + �2 = 1 and �1 − �2 = 1 for small e.

6.3. Some other examples of multiple resonances

The resonance which occurs when one of the numbers 2�1 or 2�2 is even, while the other is odd. Consider the
neighbourhoods of the two points P6(3/4, 8/3) and P7(17/12, 24/17) from region G1 in Fig. 1. When e = 0, at the point
P6 we have �1 = 1 and ω2 = 1

2 , while at the point P7 we have �1 = 3/2 and �2 = 1. For each of these points we fix the
parameter � and, for small e, using the algorithm of Section 5, we construct stability and instability regions in the e, 	
plane.

The Hamiltonian, converted using the Deprit-Hori method, is reduced to the form (3.3), when the equations for the
variables y1, Y1 and y2, Y2 are separated. From the conditions d1 > 0 and d2 > 0 (see Eqs. (3.4) with �2 = 0) for each of
the two points considered we obtain two instability regions.

It turned out that for the point P6 one of the instability regions lies inside the other. Finally we obtain an instability
region 	1 < 	 < 	2, where 	1(e) and 	2(e), up to terms of the fourth power in e inclusive, are given by the equations

In Fig. 5a the instability region is shown hatched.
In the neighbourhood of the point P7 the two instability regions obtained from the conditions d1 > 0 and d2 > 0, do

not intersect. They are given, up to the fourth power of e inclusive, by the inequalities 	1 < 	 < 	2 and 	3 < 	 < 	4,
where

These instability regions are shown hatched in Fig. 5b.
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The resonance 2�1 = n1 and �2 = 0 (n1 is an odd number). We will consider once again the two points P8(3/4, 4/3)
and P9(17/12, 12/17), in the neighbourhood of which the Hamiltonian, converted using Deprit-Hori method, has the
form (3.3), which allows of separations of the variables. As in the previous section, for each of these points we fix the
parameter � and construct stability and instability regions in the e, 	 plane.

Both of the points considered lie on the boundaries of the stability regions of the steady rotation of the satellite
being considered: P8 is on the boundary of the region G2 and P9 is on the boundary of the region G1 (Fig. 1).

For the point P8 the unperturbed Hamiltonian F0 has the form

In the unperturbed system with this Hamiltonian ω1 = 1
2 and �2 = 0. The canonical univalent replacement of variables

reduces F0 to the normal form

For the point P9 we have the following unperturbed Hamiltonian

The frequencies �1 = 3/2 and �2 = 0 correspond to this. Using the canonical univalent replacement of variables

the function F0 can be reduced to the normal form

Hence, both of the cases considered correspond to the multiple resonances from Section 3.2. In this case we must put
�2 = −1 and �2 = 1 in relations (3.3) and (3.4) for the points P8 and P9 respectively.

In the neighbourhood of the point P8, using the algorithm of Section 3.2, from the conditions d1 > 0 and d2 > 0 we
can obtain two instability regions, 	1 < 	 < 	2 and 	 > 	3. The functions 	i(e) (i = 1, 2, 3) are given by the following
equations, up to terms of the order of e4 inclusive

For small e these instability regions intersect, as a result of which the instability region in the neighbourhood of the
point P8 is given by a single equation 	 > 	1. This region is shown hatched in Fig. 6a. When 	 < 	1 we have stability.

In the neighbourhood of the point P9 we can similarly obtain two instability regions, 	1 < 	 < 	2 and 	 < 	3, where

For small e these regions do not intersect. They are shown hatched in Fig. 6b.
The resonance �1 = �2 = 0. We will investigate the stability of the steady rotation of a satellite for values of the

parameters � and 	 lying in a small neighbourhood of the point P10(2/3, 3/2) (Fig. 1). We will put

(6.18)
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Fig. 6.

The unperturbed Hamiltonian has the form

Zero frequencies of small oscillations �1 = �2 = 0 correspond to this. The canonical univalent replacement of variables

reduces the function F0 to its normal form

Consequently, we have the multiple parametric resonance considered in Section 2.1.
Calculations using the algorithm of Section 2.1 showed that, for the coefficients a and b of characteristic Eq. (1.4)

and the quantity d from relations (1.5) we have the following expressions

The stability and instability regions are found from relations (1.5). For small values of e, from the equations b = 0
and d = 0 we obtain �1 = �2 = �5 = 0, while �4 = 27/128 (in the case b = 0) and �4 = 27/128 − (3
2+9)2/4 (in the case
d = 0). Hence it also follows from expansions (6.18) that in �, 	, e parameter space the quantities b and d vanish on
the surfaces fb = 0 and fd = 0, where the functions fb and fd can be written, with an error of the order of e6, in the form

Here s1 and � are quantities defined by Eqs. (6.2) and (6.4).
At common points P*(�*, 	*) of the surfaces fb = 0, fd = 0 we have

(6.19)

At these points both coefficients a and b of characteristic Eq. (1.4) vanish.
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If the quantity e is sufficiently small, then when � > �* the coefficient a is positive, and the stability region is given
by the system of inequalities

(6.20)

Outside this region there is instability.
When e = 0, inequalities (6.2) become the inequalities s1 < 0, � > 0, which specify (see relations (6.3)) the part of the

stability region G2 of steady rotation of the satellite in a circular orbit in the neighbourhood of the point P10 (Fig. 1).
For a small fixed value of e the boundaries of this part of the region G2 are deformed, and the point P10 becomes the
point P with coordinates (6.19).
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